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Introductin.in _ Plummer [11] introduced the concept of a well-covered graph in
d ý1970. A graph is well-covered if every maximal independent set (with

respect to set inclusion) in the graph is also a maximum independent
- set. Various subclasses of well-covered graphs have been studied
- (see, for example, [1] - [7], [10], and [12] - [14] ). We consider the

subclass which we call strongly well-covered graphs. A strongly
CO ~well-covered graph G is a well-covered graph with the additional
N• i property that G-e is also well-covered for every edge e in G. By

making use of (i) structural characteristics of strongly well-covered
"graphs and (ii) the theory of Euler contributions (for planar graphs),
we show that there are only four planar strongly well-covered graphs.

Preliminaries.
"From the definition, strongly well-covered graphs remain well-

covered upon deletion of any edge. Well-covered graphs which
remain well-covered upon deletion of any vertex (called 1-well-
covered) have previously been studied by several authors (see [101,
[13] and [14] ). It is interesting to note that a strongly well-covered
graph fails to remain well-covered if any vertex is deleted. The
following theorem is proved in [10].

Theorem 1. If G (G * K1 or K2) is strongly well-covered, then for
all vertices v in G the graph G-v is not well-covered. D I .

Two structural characteristics which we need are stated in the

following two theorems. The proof of 3-connectedness proceeds by M 9 19
induction on the independence number. See [9] or [10] for proofs.

Theorem 2. If G is strongly well-covered, Ge (K1 ,K2,C4 }, then 8
> 4.

Theorem 3. Suppose G is strongly well-covered, Ge {K1,K2,C4 ).
Then G is 3-connected.

Next we state a lemma which we will frequently use later. See

[91 or [101 for the proof,
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Lemma 4. Suppose G is well-covered. Also suppose that S is an
independent set and x is a point in G such that (i) xE S and x - v for
exactly one v in S, and (ii) S dominates N[x], the closed
neighborhood of x. Then G-e is not well-covered, where e = vx.

Let G, be the subgraph of G obtained from G by deleting a vertex
v and all its neighbors. The next lemma states that if the vertex a is
isolated in the graph Gv, then the vertices a and v must have the same
set of neighbors in G. The proof is by induction on the independence
number, see [91 or [10].

Lemma 5. Suppose G is connected and strongly well-covered and v
is a point in G such that Gv has an isolated point a. Then NG(a) -
NG(v).

Planar Strongly Well-covered Graphs.
For the remainder of this paper, we restrict ourselves to planar

strongly well-covered graphs. For graphs drawn in the plane, we say
two faces are adjacent if they share an edge. If a face F contains
vertex v, we say F is incident to v. The size of a face is the number of
vertices it contains. We refer to the order and sizes of the faces
incident to a vertex v as the face configuration at v.

In the next two lemmas, we consider points of degree four and
five, respectively, in planar strongly well-covered graphs.

Lemma 6. Suppose G is strongly well-covered planar and 3-
connected. If G has a point of degree four which is on a triangular
face, then G is the octahedron graph (see Figure 1).

Figure 1
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eoof. Suppose v is a point of degree four in G and v is on a
triangular face. Let N(v) = {u1,u2,u3,u4 ). Note that 8 _> 4 by
Theorem 2.

Case 1. Suppose the face configuration at v is (3,3,3,3). Let
U1U2V, u2u3v, u3u 4v and u4ulv be the faces.

If U1 - U3, then {ul) dominates N[v]. By Lemma 4, the graph
G-vul is not well-covered This contradicts the assumption that G is
strongly well-covered. So Mi is not adjacent to u-1

Thus, there exists w.z-u1 such that we I u2,u3,u4,v}.
If w is not adjacent to U3, then {W,u3) dominates N[v], w is not

adjacent to v and U3 - v. This leads to a contradiction via Lemma 4.
So wA - U.

Let z - u, such that zeI 1u1 ,u3 ,u4,v). Ifz # w, then {z,u4) is
independent and dominates N[v], z is not adjacent to v and U4 - v. By
Lemma 4, this is a contradiction. Thus z = w; that is, w - u2 and
deg(u2) = 4. Similarly, w - u4 and deg(u4) = 4. It then follows that
deg(ul) = 4 = deg(u 3). Hence, G is the graph given in Figure 1.

Case 2. Suppose the face configuration at v is (3,3,3,n), n _> 4.
Assume the triangular faces are u2u3v, u3u4v and u4ulv. Since G is
3-connected, then U is not aiaent to u?.

If U1 - u3, then tu3 } dominates N[v], a contradiction by Lemma
4. So ul is not adjacent to u3.

Since deg(ul) Ž 4, there exist points a and b adjacent to u1 such
that {a,b) n• (v,u 2 ,u3,u4) = 0-.

If a is not adjacent to u3, then (a,u3 } is independent and
dominates N[vJ, a is not adjacent to v and u3 - v. By Lemma 4, we
have a contradiction. So a -u3and, by symmetry, ]Lm..

Since deg(u2) 2! 4, there exists z such that ze (v,u 3,b}.
Since G is planar, I z,u4} is independent. Then (z,u4} dominates
N[v], u4 - v and z is not adjacent to v, a contradiction by Lemma 4.

Thus, the face configuration (3,3,3,n), n __ 4, cannot occur.
Case 3. Suppose the cyclic face configuration is (3,3,m,n), m, n

2t 4. Assume the triangular faces are u2u3v and u3u4v. Since G is 3-
connected, then Ill is not adiacent to uQ and Mi is not adjacent to U.

If ul - u3, then Mu)1 dominates Nrv], a contradiction by Lemmna
4. So u1 is not adjacent to u3 .

Thus, let N(ul) 2 (v,a,b,c), where Ia,b,c} r) tu2,u3,u4) = 0-.
If a is not adjacent to u3, then {a,u3} is independent and Aocession For

dominates N[v], a is not adjacent to v and u3 - v. We obtain a NTIs GAU&I
contradiction via Lemma 4. So a - u3; by symmetry, b-z.Ua, c-u3-. DTIC TAB
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Without loss of generality, we can assume that b is on the"outside" of cycle au1vu 4u3 and on the "outside" of cycle ulcu3u2v
(see Figure 2). Since deg(u2) _> 4, there exists A such that
te {v,c,u3). But then (b,t,u 4 } is independent and dominates N[v], U4
- v and neither b nor t is adjacent to v. So by Lemma 4, we obtain a
contradiction.

b C

S• U

Figure 2

Hence, the cyclic face configuration (3,3,m,n), m, n 2t 4, cannot
occur.

Case 4. Suppose the cyclic face configuration at v is (3,m,3,n),
m, n __ 4, with triangular faces ulu2v and U3U4V. Since G is 3-
connected, then u is not adjacent to u4 and w2 is not adjacent to u3.

Case 4.1. Suppose ul - u3. If there exists x - u4 (Xf {v,u3))
such that x is not adjacent to ul, then {x,ul) is independent and
dominates N[vJ, x is not adjacent to v and ul - v. By Lemma 4, we
have a contradiction. Thus, N(u1 ) 2 N(u 4). Similarly, N(u 3)
N(u 2). By Lemma 5, it follows that N(ul) = N(u4 ) and N(u 3) =
N(u 2). Since ul - u3 and G is planar, then u2 is not adjacent to u4.
But u3 - u4, and so N(u 3) * N(u 2), a contradiction.

Hence, uj is not adjacent to u3. By symmetry, u? is not adjacen
1g..•. Thus, tere exist points a and b such that a and b are neighbors

Qf uland {a,b} r) {v,u2,u3,u 4 } = 0.
Case 4.2. Suppose a - u2. If a is not adjacent to u3, then (a,u3)

is independent and dominates N[v], a contradiction by Lemma 4. So
a - u3 and, similarly, a - U4. By Lemma 5, it follows that N(a) =
N(v), and so deg(a) = 4.
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Since 8 > 4 and G is planar, then {u1,u4 ) is a cutset for G. Since
G is 3-connected, we have a contradiction.

Hence, a is not adjacent to u2 . More generally, if x - ul, x # v,
then x is not adjacent to u2. By symmetry, if y - u2, y * v, then y is
not adjacent to ul. Since deg(ui) > 4 for all i, there exist neighbors c

and d ofui such that (c,d) n J v,uI) = 0, and by the preceding

sentence we note that (a,b} n (c,d) = 0.
Since G is planar, then x is not adjacent to y for some xc { a,b},

yE (c,d). Without loss of generality, suppose b is not adjacent to c.
Case 4.3. Suppose c - U3.
Case 4.3.1. If c - u4, then {c,ul) is independent and dominates

N[v], a contradiction by Lemma 4. So c is not adjacent to u4.
Case 4.3.2. If b is not adjacent to u4, then Ib,c,u4} is

independent and dominates N[v], a contradiction. So b - u4.

Case 4.3.3. If b - U3, then {b,u2 ) dominates N[v], a
contradiction. Thus, b is not adjacent to u3.

Case 4.3.4. Suppose u4 - x for all xeN(ul)-u 2. Then (u 2,u4 )
is independent and dominates Nful], a contradiction by Lemma 4. So
there exists x - ul, x * u2, such that x is not adjacent to u4 .

If x is not adjacent to c, then {c,x,u4) is independent and
dominates N[v], a contradiction. So x - c.

Now by symmetry of the points ui and u2, there exists y - u2, y
•ul, such that y is not adjacent to u3. Since x - c, then {b,y,u 3 } is
independent. Since (b,y,u3) dominates N[v], we arrive at a
contradiction via Lemma 4.

Thus, c is not adjacent to u3 and, by symmetry, b is not adjacent

If c - u4, then (b,c,u 3 } is independent and dominates N[v], a
contradiction by Lemma 4. So c is not adjacnt to au. By symmetry,
b is not adjacent to u3. Thus, (b,c,u 3 } is independent and dominates
N[v]. We obtain a contradiction from Lemma 4.

Hence, the cyclic face configuration (3,m,3,n), m, n > 4, cannot
occur.

From Cases 1 through 4, we see that the only other possibility is
that v has exactly one triangle in its face configuration.

Case 5. Suppose v has face configuration (3,l,m,n), 1, m, n _> 4,
with ulu2v as the face triangle at v. Since G is 3-connected, isnot
lfli ,t is not adjacent to u4 and u4 is not adjacent to u1.

Suppose ul - U3. As in Case 4.1, we have N(ul) Q N(u4).
Then by Lemma 5, it follows that N(ul) = N(u4 ). But ul - U3 and U4
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is not adjacent to U3, a contradiction. Thus, Mi. is not adjacent to u3.
By symmetry, u? is not adjacent to W.

Let w - U3 , we (v,ul,u2,u4). Suppose w - u4. If w is not
adjacent to ul, then (w,u1 ) is independent and dominates N[v], a
contradiction. So w - ul and, by symmetry, w - U2. Thus, N(w) =

N(v) by Lemma 5. Since 8 > 4 by Theorem 2, then {ul,u4} is a
cutset for G, contradicting 3-connectedness.

Hence, w is not adjacent to u4 and so N(u•) n N(u1.z.Ly.

Since G is planar and 8 > 4, then there exist points x and y such

that x-..u3 , yzi and x is not adjacent to y, where ve I x,y).
Suppose y - u2. If y is not adjacent to ut, then {x,y,ul) is
independent and dominates N[v], a contradiction. So y - ul. But
then { y,u3 } is independent and dominates N[v], a contradiction. So y
is not adjacent to u2. By symmetry, x is not adjacent to ul.

If y is not adjacent to ul, then (x,y,ut) is independent and
dominates N[v], a contradiction. So YX1-.- and, by symmetry, x-
A4.

Suppose ze N(u 2)-ul implies z - U3. Then {ulu3} dominates
N[u 2], ul - u2 and U3 is not adjacent to u2. By Lemma 4, we obtain a

contradiction. So there exists ze N(u2))-ui such that z is not adjacent

Let a and b be neighbors ofu 4 such that (a,b) n {v,y) = 0,

and let c and d be neighbors of u3 such that (c,d} r) {v,x} = 0.

From above, we know that {a,b,y) n (c,d,xj = 0 (see Figure 3).

U U2

Y a d x
Figure 3
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Suppose a = z (that is, a - u2). Also suppose a - ul. Since
N(u3) n N(u4) = (v), then (a,u3 ) is independent. Also, (a,u3}
dominates N[v]. We obtain a contradiction via Lemma 4.

So a is not adjacent to ul. Suppose a - t for all tE N(u 3) - v.
Then {a,v) dominates N[u3 ], a contradiction. So there exists some t
- U3, t * v, such that t is not adjacent to a. Since G is planar, then
{a,t,ul) is independent. Since also {a,t,ul) dominates N[vJ, we
obtain a contradiction via Lemma 4.

Thus, a*z and, by symmetry, b * z.
Suppose there exists se {a,b} such that s - ul. Since G is

planar, then either s is not adjacent to z or y is not adjacent to z. Say s
is not adjacent to z. Then { s,z,u3) is independent and dominates
N[v], a contradiction. If y is not adjacent to z, then we obtain a
similar contradiction.

Thus, sEf a.b I implies s is not adjacent to u1 . Likewise,

te Ic.dl implies t is not adjacent to u2 .
If y - c or y - d, then x is not adjacent to a. Then (a,x,uj ) is

independent and dominates N[v], a contradiction. So gjacentiQ
neither c nor d. But then (c,y,u2) is independent and dominates
N[v], a contradiction by Lemma 4.

Therefore, the face configuration (3,l,m,n), 1, m, n : 4, is not
possible.

Hence if G has a point of degree four which is on a triangular
face, then G is the octahedron graph given in Figure 1.

Lemma 7. Suppose G is strongly well-covered planar and 3-
connected. Then G cannot have a point of degree five with face
configuration (3,3,3,3,n), n = 3, 4, or 5.

Eoof. Suppose G has a point v with deg(v) = 5 and face
configuration (3,3,3,3,n), n = 3, 4 or 5. Let N(v) =
{ul,u2,u3,u4,u5j}. Let Ui = N(ui)-N[v], for i = 1, ...9 5. Since ui is
in a triangle for all i, then it follows from Lemma 6 that 5 for
all i.

Case 1. Suppose n = 3. Suppose ui - u3. If ul - u4, then {ul }
dominates N[v]. By Lemma 4, we obtain a contradiction. So ul is
not adjacent to u4.

Suppose there exists x - u4 such that x is not adjacent to ul.
Then (x,ul ) is independent and dominates N[v], ul - v and x is not
adjacent to v. By Lemma 4, we obtain a contradiction.
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Thus, N(ut) . N(u 4 ). It follows from Lemma 5 that N(ul) =
N(u 4). Since ul - U3 and G is planar, then u2 is not adjacent to u4.
But ul - u2 implies N(ul) * N(u4 ), a contradiction.

So uI is not adjacent to ui. By symmetry, U1,is not adjacent to

a u? is not adjacent to ui, u2 is not adiacent topU4, and u!,;is notamacent to Z~.

Case 1.1. Suppose U3 n U4 * 0. Let ae U3 n U4. If a is not
adjacent to ut, then (a,ut) is independent and dominates N[vI, a
contradiction. So a - ul.

Case 1.1.1. Suppose a - u2. If a is not adjacent to us, then
(a,u5) is independent and dominates N[vJ, a contradiction; so a - u5.

Suppose xe U3 implies x - u4 (that is, U42 U3). Then {ulu4}
dominates NIu3], ul is not adjacent to u3 and U4 - u3. By Lemma 4,
we obtain a contradiction. Thus, there exists xE U3 such that x is not

adjacent to u4. Similarly, there exists ye U4 such that y is not adjacent
to u3.

If y is not adjacent to x, then {x,y,ul) is independent and
dominates N[v], a contradiction. So y - x (see Figure 4). Since
deg(u2) -Ž 5, there exists t - u2 such that tE (ut,u3,a,v). In particular,
{t,x,u5) is independent. Since (t,x,us} also dominates N[v], we
obtain a contradiction by Lemma 4.

U~ u 2

Figure 4

Case 1.1.2. Thus, a is not adjacent to u2. By symmetry, a is not
adjacent to u5. Suppose xE U2 implies x - a. Then (a,v) dominates
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NIu2], v - u2 and a is not adjacent to u2. By Lemma 4, we obtain a
contradiction.

Thus, there exists XE U2 such that x is not adjacent to a. But then
{ a,x,u5 ) is independent and dominates N[v], a contradiction.

Case 1.2. Hence, Via-.!Ls _--0. By symmetry, Ui.r) LL. ,
for all i (addition mod 5). Since G is planar and deg(ui) Ž- 5 for all i,
then there exist x -uit and yz-ju such that x is not adjacent to y.

Suppose x - ul. If x - z for all zE U5, then {x,v} is independent and
dominates N[u5], v - u5 and x is not adjacent to u5. By Lemma 4, we

obtain a contradiction. Thus, there exists ze U5 such that x is not
adjacent to z. But then I x,z,u3) is independent and dominates N[v], a
contradiction.

So x is not adjacent to u1. By symmetry, y is not adjacent to ul.
Thus, { x,y,ul ) is independent and dominates N[v], a contradiction.

So n = 3 is not possible.
Case 2. Suppose n = 4. Let the 4-face at v be vu4au5. If a is not

adjacent to u2, then {a,u 2} is independent and dominates N[v], a
contradiction. So a-u).

Suppose a - ul. If-a is not adjacent to U3, then (a,u3} is
independent and dominates Nivi, a contradiction. So a - u3. Since

deg(ui) > 5 for all i, there exist x - U4 such that xe (a,v,u3} and y -

u5 such that ye {a,v,ul). Then tx,y,u 2) is independent and
dominates N[v], a contradiction. Thus, a is not adjacent to u1. By
symmetry, a is not adjacent to u3.

Suppose XE U3 implies x - a. Then I a,v) dominates N[u 3], v -

u3 and a is not adjacent to u3. By Lemma 4, we have a contradiction.

So there exists & such that x is not adjacent to a. But then
(a,x,ut) is independent (since G is planar) and dominates N[v], a
contradiction.

Hence, n = 4 is not possible.
Case 3. Suppose n = 5. Let the 5-face at v be vu4abu5 . Since G

is 3-connected, then u4 is not adjacent to u5, b is not adjacent to g4
and a is not adjacent to u5.

Suppose u4 and u5 have a common neighbor w, w # v. If w is
not adjacent to u2, then {w,u2) is independent and dominates N[v], a

contradiction. So w - U2. Since deg(u3) > 5, there exists xc U3 such
that x * w. Since G is planar, Ia,x,u I) is independent. Thus,
{a,x,ul) is independent and dominates Nivi, a contradiction.

Hence, ul-uand u5 don't have a common neighbor w. w * v.
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Suppose u1 - U3. If ul is not adjacent to a, then {a,ul) is
independent and dominates N[v], a contradiction. So ul - a. But then
{ b,u3) is independent and dominates N[v], a contradiction. Thus, uj
is not adacent to ua.

Suppose a - u2. Then (b,u 3) is independent. If b - ul, then
{b,u 3) dominates N[v], a contradiction. So b is not adjacent to ul.

Suppose xe U1 implies x - b. Then tb,v) dominates N[ul], v
- ul and b is not adjacent to ul. By Lemma 4, we obtain a
contradiction. Thus, there exists xe U1 such that x is not adjacent to
b. But then {b,x,u 3} is independent and dominates N[v], a
contradiction.

Hence, a is not adjacent to u2 ; by symmetry, b is not adjacent to
u2.-

Suppose u2 - u4. If b is not adjacent to u2, then {b,u2) is
independent and dominates N[v], a contradiction. So b - u2. Let z -
U3 such that ze (u2,u4,v}. Since G is planar, then (a,z,ul) is
independent. Since ta,z,ul dominates N[v], we arrive at a
contradiction via Lemma 4.

So u2 is not adjacent to u4; by symmetry, u2 is not adjacent to u_.
Suppose xE N(u 4 )-a implies x - u2. Then (a,u2} dominates

N[u4], a - u4 and u2 is not adjacent to u4. By Lemma 4, we obtain a
contradiction. So there exists &_.=_U, x * a, such that x is not adjacent
tou.. Similarly, there exists X..._5, y * b, such that y is not adjacent
tou._ From above, & . See Figure 5.

U U2

y

Figure 5

Suppose x - y. Since G is planar, then either x is not adjacent to
b or y is not adjacent to a. Without loss of generality, assume x is not
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adjacent to b. Then (b,x,u 2) is independent and dominates N[vi, a
contradiction from Lemma 4.

Thus, x is not adjacent to y. Then ( x,y,u2) is independent and
dominates N[v], a contradiction via Lemma 4.

Hence, n = 5 is not possible.
Thus, G cannot have a point v with deg(v) = 5 and face

configuration (3,3,3,3,n), n = 3, 4 or 5. [1

Lebesgue [8] developed the theory of Euler contributions for
planar graphs. The Euler contribution of a vertex v, •(Ky_, is defined

as the quantity O(v) = 1 - (1/2)deg(v) + 1(l/xi), where the sum is
taken over all faces Fi incident to v and xi is the size of Fi. If IF(G)I
denotes the number of faces in the plane graph G, then it follows that
Y, )(v) = IV(G)I - IE(G)I + IF(G)I. Here the sum is taken over all
vertices v in G. Since Euler's formula for plane graphs says IV(G)i -
IE(G)I + IF(G)I = 2, then we have Y-, O(v) = 2. Thus, O(v) must be

positive for some v in G. From the definition of O(v), it follows

easily that O(v) < 0 whenever deg(v) > 6. Thus, if O(v) > 0, then
deg(v) < 5.

As a consequence of the two previous lemmas and the theory of
Euler contributions, we find all 3-connected planar strongly well-
covered graphs in the following theorem.

Theorem 8. Suppose G is strongly well-covered planar and 3-
connected. Then G is the octahedron graph shown in Figure 1.

Proof. From Theorem 2, 8 > 4. Suppose v is a point in G with

positive Euler contribution; that is, O(v) > 0. Then deg(v) = 4 or 5.

If deg(v) = 4, then O(v) = 1 - (1/2)(4) + Z(l/xi) = -I + Y(1/x0),
where the sum is taken over all faces incident to v. For O(v) to be

positive, _,(l/xi) must be greater than 1. Thus, v must lie on a

triangular face in order for O(v) to be positive. From Lemma 6, this
can only occur if G is the graph given in Figure 1.

If deg(v) = 5, then O(v) = I - (1/2)(5) + Z(l/xi) = -3/2 + 1(l/xi),

where the sum is taken over all faces incident to v. For O(v) to be

positive in this case, X(l/xi) must be greater than 3/2. Thus, v must
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have a face configuration of the form (3,3,3,3,n), n = 3, 4 or 5. But
from Lemma 7, this cannot occur. []

From Theorem 3, we know that all strongly well-covered graphs
on more than four points are 3-connected. Thus, we conclude in the
following corollary that there are exactly four planar strongly well-
covered graphs.

Corollary 9. The only planar strongly well-covered graph- are K1 ,
K2, C4 and the octahedron graph shown in Figure 1.
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